Serveur d'exploration sur les mitochondries dans l'oxydoréduction chez les plantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Alternative mitochondrial respiratory chains from two crustaceans: Artemia franciscana nauplii and the white shrimp, Litopenaeus vannamei.

Identifieur interne : 000241 ( Main/Exploration ); précédent : 000240; suivant : 000242

Alternative mitochondrial respiratory chains from two crustaceans: Artemia franciscana nauplii and the white shrimp, Litopenaeus vannamei.

Auteurs : Chrystian Rodriguez-Armenta [Mexique] ; Salvador Uribe-Carvajal [Mexique] ; Monica Rosas-Lemus [États-Unis] ; Natalia Chiquete-Felix [Mexique] ; Jose Angel Huerta-Ocampo [Mexique] ; Adriana Muhlia-Almazan [Mexique]

Source :

RBID : pubmed:29594796

Descripteurs français

English descriptors

Abstract

Mitochondrial ATP is synthesized by coupling between the electron transport chain and complex V. In contrast, physiological uncoupling of these processes allows mitochondria to consume oxygen at high rates without ATP synthesis. Such uncoupling mechanisms prevent reactive oxygen species overproduction. One of these mechanisms are the alternative redox enzymes from the mitochondrial respiratory chain, which may help cells to maintain homeostasis under stress independently of ATP synthesis. To date, no reports have been published on alternative redox enzymes in crustaceans mitochondria. Specific inhibitors were used to identify alternative redox enzymes in mitochondria isolated from Artemia franciscana nauplii, and the white shrimp, Litopenaeus vannamei. We report the presence of two alternative redox enzymes in the respiratory chain of A. franciscana nauplii, whose isolated mitochondria used glycerol-3-phosphate as a substrate, suggesting the existence of a glycerol-3-phosphate dehydrogenase. In addition, cyanide and octyl-gallate were necessary to fully inhibit this species' mitochondrial oxygen consumption, suggesting an alternative oxidase is present. The in-gel activity analysis confirmed that additional mitochondrial redox proteins exist in A. franciscana. A mitochondrial glycerol-3-phosphate dehydrogenase oxidase was identified by protein sequencing as part of a branched respiratory chain, and an alternative oxidase was also identified in this species by western blot. These results indicate different adaptive mechanisms from artemia to face environmental challenges related to the changing levels of oxygen concentration in seawater through their life cycles. No alternative redox enzymes were found in shrimp mitochondria, further efforts will determine the existence of an uncoupling mechanism such as uncoupling proteins.

DOI: 10.1007/s10863-018-9753-0
PubMed: 29594796


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Alternative mitochondrial respiratory chains from two crustaceans: Artemia franciscana nauplii and the white shrimp, Litopenaeus vannamei.</title>
<author>
<name sortKey="Rodriguez Armenta, Chrystian" sort="Rodriguez Armenta, Chrystian" uniqKey="Rodriguez Armenta C" first="Chrystian" last="Rodriguez-Armenta">Chrystian Rodriguez-Armenta</name>
<affiliation wicri:level="1">
<nlm:affiliation>Bioenergetics and Molecular Genetics Laboratory, Centro de Investigacion en Alimentacion y Desarrollo (CIAD), A. C. Carretera a Ejido La Victoria Km 0.6, PO Box. 1735, 83000, Hermosillo, Sonora, Mexico.</nlm:affiliation>
<country xml:lang="fr">Mexique</country>
<wicri:regionArea>Bioenergetics and Molecular Genetics Laboratory, Centro de Investigacion en Alimentacion y Desarrollo (CIAD), A. C. Carretera a Ejido La Victoria Km 0.6, PO Box. 1735, 83000, Hermosillo, Sonora</wicri:regionArea>
<wicri:noRegion>Sonora</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Uribe Carvajal, Salvador" sort="Uribe Carvajal, Salvador" uniqKey="Uribe Carvajal S" first="Salvador" last="Uribe-Carvajal">Salvador Uribe-Carvajal</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Genetics, Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Box. 70-242, Mexico City, Mexico.</nlm:affiliation>
<country xml:lang="fr">Mexique</country>
<wicri:regionArea>Department of Molecular Genetics, Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Box. 70-242, Mexico City</wicri:regionArea>
<wicri:noRegion>Mexico City</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rosas Lemus, Monica" sort="Rosas Lemus, Monica" uniqKey="Rosas Lemus M" first="Monica" last="Rosas-Lemus">Monica Rosas-Lemus</name>
<affiliation wicri:level="2">
<nlm:affiliation>Illinois Institute of Technology, Chicago, IL, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Illinois Institute of Technology, Chicago, IL</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chiquete Felix, Natalia" sort="Chiquete Felix, Natalia" uniqKey="Chiquete Felix N" first="Natalia" last="Chiquete-Felix">Natalia Chiquete-Felix</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Genetics, Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Box. 70-242, Mexico City, Mexico.</nlm:affiliation>
<country xml:lang="fr">Mexique</country>
<wicri:regionArea>Department of Molecular Genetics, Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Box. 70-242, Mexico City</wicri:regionArea>
<wicri:noRegion>Mexico City</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Huerta Ocampo, Jose Angel" sort="Huerta Ocampo, Jose Angel" uniqKey="Huerta Ocampo J" first="Jose Angel" last="Huerta-Ocampo">Jose Angel Huerta-Ocampo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Protein Biochemistry Laboratory, CONACYT-Centro de Investigacion en Alimentacion y Desarrollo (CIAD), A. C. Carretera a Ejido La Victoria Km 0.6, PO Box. 1735, 83000, Hermosillo, Sonora, Mexico.</nlm:affiliation>
<country xml:lang="fr">Mexique</country>
<wicri:regionArea>Protein Biochemistry Laboratory, CONACYT-Centro de Investigacion en Alimentacion y Desarrollo (CIAD), A. C. Carretera a Ejido La Victoria Km 0.6, PO Box. 1735, 83000, Hermosillo, Sonora</wicri:regionArea>
<wicri:noRegion>Sonora</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Muhlia Almazan, Adriana" sort="Muhlia Almazan, Adriana" uniqKey="Muhlia Almazan A" first="Adriana" last="Muhlia-Almazan">Adriana Muhlia-Almazan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Bioenergetics and Molecular Genetics Laboratory, Centro de Investigacion en Alimentacion y Desarrollo (CIAD), A. C. Carretera a Ejido La Victoria Km 0.6, PO Box. 1735, 83000, Hermosillo, Sonora, Mexico. amuhlia@ciad.mx.</nlm:affiliation>
<country xml:lang="fr">Mexique</country>
<wicri:regionArea>Bioenergetics and Molecular Genetics Laboratory, Centro de Investigacion en Alimentacion y Desarrollo (CIAD), A. C. Carretera a Ejido La Victoria Km 0.6, PO Box. 1735, 83000, Hermosillo, Sonora</wicri:regionArea>
<wicri:noRegion>Sonora</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29594796</idno>
<idno type="pmid">29594796</idno>
<idno type="doi">10.1007/s10863-018-9753-0</idno>
<idno type="wicri:Area/Main/Corpus">000222</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000222</idno>
<idno type="wicri:Area/Main/Curation">000222</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000222</idno>
<idno type="wicri:Area/Main/Exploration">000222</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Alternative mitochondrial respiratory chains from two crustaceans: Artemia franciscana nauplii and the white shrimp, Litopenaeus vannamei.</title>
<author>
<name sortKey="Rodriguez Armenta, Chrystian" sort="Rodriguez Armenta, Chrystian" uniqKey="Rodriguez Armenta C" first="Chrystian" last="Rodriguez-Armenta">Chrystian Rodriguez-Armenta</name>
<affiliation wicri:level="1">
<nlm:affiliation>Bioenergetics and Molecular Genetics Laboratory, Centro de Investigacion en Alimentacion y Desarrollo (CIAD), A. C. Carretera a Ejido La Victoria Km 0.6, PO Box. 1735, 83000, Hermosillo, Sonora, Mexico.</nlm:affiliation>
<country xml:lang="fr">Mexique</country>
<wicri:regionArea>Bioenergetics and Molecular Genetics Laboratory, Centro de Investigacion en Alimentacion y Desarrollo (CIAD), A. C. Carretera a Ejido La Victoria Km 0.6, PO Box. 1735, 83000, Hermosillo, Sonora</wicri:regionArea>
<wicri:noRegion>Sonora</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Uribe Carvajal, Salvador" sort="Uribe Carvajal, Salvador" uniqKey="Uribe Carvajal S" first="Salvador" last="Uribe-Carvajal">Salvador Uribe-Carvajal</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Genetics, Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Box. 70-242, Mexico City, Mexico.</nlm:affiliation>
<country xml:lang="fr">Mexique</country>
<wicri:regionArea>Department of Molecular Genetics, Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Box. 70-242, Mexico City</wicri:regionArea>
<wicri:noRegion>Mexico City</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rosas Lemus, Monica" sort="Rosas Lemus, Monica" uniqKey="Rosas Lemus M" first="Monica" last="Rosas-Lemus">Monica Rosas-Lemus</name>
<affiliation wicri:level="2">
<nlm:affiliation>Illinois Institute of Technology, Chicago, IL, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Illinois Institute of Technology, Chicago, IL</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chiquete Felix, Natalia" sort="Chiquete Felix, Natalia" uniqKey="Chiquete Felix N" first="Natalia" last="Chiquete-Felix">Natalia Chiquete-Felix</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Genetics, Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Box. 70-242, Mexico City, Mexico.</nlm:affiliation>
<country xml:lang="fr">Mexique</country>
<wicri:regionArea>Department of Molecular Genetics, Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Box. 70-242, Mexico City</wicri:regionArea>
<wicri:noRegion>Mexico City</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Huerta Ocampo, Jose Angel" sort="Huerta Ocampo, Jose Angel" uniqKey="Huerta Ocampo J" first="Jose Angel" last="Huerta-Ocampo">Jose Angel Huerta-Ocampo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Protein Biochemistry Laboratory, CONACYT-Centro de Investigacion en Alimentacion y Desarrollo (CIAD), A. C. Carretera a Ejido La Victoria Km 0.6, PO Box. 1735, 83000, Hermosillo, Sonora, Mexico.</nlm:affiliation>
<country xml:lang="fr">Mexique</country>
<wicri:regionArea>Protein Biochemistry Laboratory, CONACYT-Centro de Investigacion en Alimentacion y Desarrollo (CIAD), A. C. Carretera a Ejido La Victoria Km 0.6, PO Box. 1735, 83000, Hermosillo, Sonora</wicri:regionArea>
<wicri:noRegion>Sonora</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Muhlia Almazan, Adriana" sort="Muhlia Almazan, Adriana" uniqKey="Muhlia Almazan A" first="Adriana" last="Muhlia-Almazan">Adriana Muhlia-Almazan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Bioenergetics and Molecular Genetics Laboratory, Centro de Investigacion en Alimentacion y Desarrollo (CIAD), A. C. Carretera a Ejido La Victoria Km 0.6, PO Box. 1735, 83000, Hermosillo, Sonora, Mexico. amuhlia@ciad.mx.</nlm:affiliation>
<country xml:lang="fr">Mexique</country>
<wicri:regionArea>Bioenergetics and Molecular Genetics Laboratory, Centro de Investigacion en Alimentacion y Desarrollo (CIAD), A. C. Carretera a Ejido La Victoria Km 0.6, PO Box. 1735, 83000, Hermosillo, Sonora</wicri:regionArea>
<wicri:noRegion>Sonora</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of bioenergetics and biomembranes</title>
<idno type="eISSN">1573-6881</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Artemia (chemistry)</term>
<term>Electron Transport (MeSH)</term>
<term>Glycerolphosphate Dehydrogenase (MeSH)</term>
<term>Mitochondria (chemistry)</term>
<term>Mitochondria (metabolism)</term>
<term>Mitochondrial Proteins (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidoreductases (MeSH)</term>
<term>Oxygen Consumption (MeSH)</term>
<term>Penaeidae (chemistry)</term>
<term>Plant Proteins (MeSH)</term>
<term>Substrate Specificity (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adaptation physiologique (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Artemia (composition chimique)</term>
<term>Consommation d'oxygène (MeSH)</term>
<term>Glycerolphosphate dehydrogenase (MeSH)</term>
<term>Mitochondries (composition chimique)</term>
<term>Mitochondries (métabolisme)</term>
<term>Oxidoreductases (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Penaeidae (composition chimique)</term>
<term>Protéines mitochondriales (MeSH)</term>
<term>Protéines végétales (MeSH)</term>
<term>Spécificité du substrat (MeSH)</term>
<term>Transport d'électrons (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Glycerolphosphate Dehydrogenase</term>
<term>Mitochondrial Proteins</term>
<term>Oxidoreductases</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Artemia</term>
<term>Mitochondria</term>
<term>Penaeidae</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Artemia</term>
<term>Mitochondries</term>
<term>Penaeidae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mitochondria</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Mitochondries</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Animals</term>
<term>Electron Transport</term>
<term>Oxidation-Reduction</term>
<term>Oxygen Consumption</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adaptation physiologique</term>
<term>Animaux</term>
<term>Consommation d'oxygène</term>
<term>Glycerolphosphate dehydrogenase</term>
<term>Oxidoreductases</term>
<term>Oxydoréduction</term>
<term>Protéines mitochondriales</term>
<term>Protéines végétales</term>
<term>Spécificité du substrat</term>
<term>Transport d'électrons</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Mitochondrial ATP is synthesized by coupling between the electron transport chain and complex V. In contrast, physiological uncoupling of these processes allows mitochondria to consume oxygen at high rates without ATP synthesis. Such uncoupling mechanisms prevent reactive oxygen species overproduction. One of these mechanisms are the alternative redox enzymes from the mitochondrial respiratory chain, which may help cells to maintain homeostasis under stress independently of ATP synthesis. To date, no reports have been published on alternative redox enzymes in crustaceans mitochondria. Specific inhibitors were used to identify alternative redox enzymes in mitochondria isolated from Artemia franciscana nauplii, and the white shrimp, Litopenaeus vannamei. We report the presence of two alternative redox enzymes in the respiratory chain of A. franciscana nauplii, whose isolated mitochondria used glycerol-3-phosphate as a substrate, suggesting the existence of a glycerol-3-phosphate dehydrogenase. In addition, cyanide and octyl-gallate were necessary to fully inhibit this species' mitochondrial oxygen consumption, suggesting an alternative oxidase is present. The in-gel activity analysis confirmed that additional mitochondrial redox proteins exist in A. franciscana. A mitochondrial glycerol-3-phosphate dehydrogenase oxidase was identified by protein sequencing as part of a branched respiratory chain, and an alternative oxidase was also identified in this species by western blot. These results indicate different adaptive mechanisms from artemia to face environmental challenges related to the changing levels of oxygen concentration in seawater through their life cycles. No alternative redox enzymes were found in shrimp mitochondria, further efforts will determine the existence of an uncoupling mechanism such as uncoupling proteins.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29594796</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>12</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-6881</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>50</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2018</Year>
<Month>04</Month>
</PubDate>
</JournalIssue>
<Title>Journal of bioenergetics and biomembranes</Title>
<ISOAbbreviation>J Bioenerg Biomembr</ISOAbbreviation>
</Journal>
<ArticleTitle>Alternative mitochondrial respiratory chains from two crustaceans: Artemia franciscana nauplii and the white shrimp, Litopenaeus vannamei.</ArticleTitle>
<Pagination>
<MedlinePgn>143-152</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s10863-018-9753-0</ELocationID>
<Abstract>
<AbstractText>Mitochondrial ATP is synthesized by coupling between the electron transport chain and complex V. In contrast, physiological uncoupling of these processes allows mitochondria to consume oxygen at high rates without ATP synthesis. Such uncoupling mechanisms prevent reactive oxygen species overproduction. One of these mechanisms are the alternative redox enzymes from the mitochondrial respiratory chain, which may help cells to maintain homeostasis under stress independently of ATP synthesis. To date, no reports have been published on alternative redox enzymes in crustaceans mitochondria. Specific inhibitors were used to identify alternative redox enzymes in mitochondria isolated from Artemia franciscana nauplii, and the white shrimp, Litopenaeus vannamei. We report the presence of two alternative redox enzymes in the respiratory chain of A. franciscana nauplii, whose isolated mitochondria used glycerol-3-phosphate as a substrate, suggesting the existence of a glycerol-3-phosphate dehydrogenase. In addition, cyanide and octyl-gallate were necessary to fully inhibit this species' mitochondrial oxygen consumption, suggesting an alternative oxidase is present. The in-gel activity analysis confirmed that additional mitochondrial redox proteins exist in A. franciscana. A mitochondrial glycerol-3-phosphate dehydrogenase oxidase was identified by protein sequencing as part of a branched respiratory chain, and an alternative oxidase was also identified in this species by western blot. These results indicate different adaptive mechanisms from artemia to face environmental challenges related to the changing levels of oxygen concentration in seawater through their life cycles. No alternative redox enzymes were found in shrimp mitochondria, further efforts will determine the existence of an uncoupling mechanism such as uncoupling proteins.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rodriguez-Armenta</LastName>
<ForeName>Chrystian</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Bioenergetics and Molecular Genetics Laboratory, Centro de Investigacion en Alimentacion y Desarrollo (CIAD), A. C. Carretera a Ejido La Victoria Km 0.6, PO Box. 1735, 83000, Hermosillo, Sonora, Mexico.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Uribe-Carvajal</LastName>
<ForeName>Salvador</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Genetics, Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Box. 70-242, Mexico City, Mexico.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rosas-Lemus</LastName>
<ForeName>Monica</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Illinois Institute of Technology, Chicago, IL, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chiquete-Felix</LastName>
<ForeName>Natalia</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Genetics, Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Box. 70-242, Mexico City, Mexico.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Huerta-Ocampo</LastName>
<ForeName>Jose Angel</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Protein Biochemistry Laboratory, CONACYT-Centro de Investigacion en Alimentacion y Desarrollo (CIAD), A. C. Carretera a Ejido La Victoria Km 0.6, PO Box. 1735, 83000, Hermosillo, Sonora, Mexico.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Muhlia-Almazan</LastName>
<ForeName>Adriana</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Bioenergetics and Molecular Genetics Laboratory, Centro de Investigacion en Alimentacion y Desarrollo (CIAD), A. C. Carretera a Ejido La Victoria Km 0.6, PO Box. 1735, 83000, Hermosillo, Sonora, Mexico. amuhlia@ciad.mx.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>03</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Bioenerg Biomembr</MedlineTA>
<NlmUniqueID>7701859</NlmUniqueID>
<ISSNLinking>0145-479X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D024101">Mitochondrial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="C088813">alternative oxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.-</RegistryNumber>
<NameOfSubstance UI="D005993">Glycerolphosphate Dehydrogenase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.3.21</RegistryNumber>
<NameOfSubstance UI="C098831">glycerol-3-phosphate oxidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="N">Adaptation, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001156" MajorTopicYN="N">Artemia</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004579" MajorTopicYN="Y">Electron Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005993" MajorTopicYN="N">Glycerolphosphate Dehydrogenase</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024101" MajorTopicYN="N">Mitochondrial Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010101" MajorTopicYN="Y">Oxygen Consumption</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D033561" MajorTopicYN="N">Penaeidae</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Alternative enzymes</Keyword>
<Keyword MajorTopicYN="Y">Artemia</Keyword>
<Keyword MajorTopicYN="Y">Branched respiratory chain</Keyword>
<Keyword MajorTopicYN="Y">Mitochondria</Keyword>
<Keyword MajorTopicYN="Y">Shrimp</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>03</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>03</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>3</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>12</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>3</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29594796</ArticleId>
<ArticleId IdType="doi">10.1007/s10863-018-9753-0</ArticleId>
<ArticleId IdType="pii">10.1007/s10863-018-9753-0</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Arch Biochem Biophys. 2000 Jun 15;378(2):234-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10860541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Biol. 2009 Aug;212(Pt 16):2627-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19648408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Aug;126(4):1619-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11500560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Feb;1817(2):353-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22138628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bioenerg Biomembr. 2014 Jun;46(3):189-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24338495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Regul Integr Comp Physiol. 2005 Jul;289(1):R68-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15718386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2009 Feb;1787(2):75-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19038229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 Mar 8;12 (3):e0173389</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28273139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Feb 28;494(7438):443-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23417064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2004;55:23-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15725055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2009;10(4):R42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19393038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Biol. 1964 Dec;41:879-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14239915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Cell Biol. 2007;80:723-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17445719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Biol. 2000 Nov;203(Pt 21):3355-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11023855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">388439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1997 Oct 13;416(1):15-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9369223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1995 Oct 15;233(2):531-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7588798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 1997 Oct;18(11):2059-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9420170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Biosci. 2007 Jan 01;12:933-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17127350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Biol. 1997;200(Pt 3):467-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9318130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2003 Jun 5;1604(2):77-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12765765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 2014 Jul;102:124-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24657599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2014 Sep 15;171(15):1423-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25046763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2003 May 1;371(Pt 3):1005-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12556227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1991 Feb 14;195(3):857-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1900238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bioenerg Biomembr. 2011 Jun;43(3):323-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21556887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1989 Apr;89(4):1311-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2007 Jul;6(7):1215-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17426019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2010 Oct;9(10):2149-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20173216</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Mexique</li>
<li>États-Unis</li>
</country>
<region>
<li>Illinois</li>
</region>
</list>
<tree>
<country name="Mexique">
<noRegion>
<name sortKey="Rodriguez Armenta, Chrystian" sort="Rodriguez Armenta, Chrystian" uniqKey="Rodriguez Armenta C" first="Chrystian" last="Rodriguez-Armenta">Chrystian Rodriguez-Armenta</name>
</noRegion>
<name sortKey="Chiquete Felix, Natalia" sort="Chiquete Felix, Natalia" uniqKey="Chiquete Felix N" first="Natalia" last="Chiquete-Felix">Natalia Chiquete-Felix</name>
<name sortKey="Huerta Ocampo, Jose Angel" sort="Huerta Ocampo, Jose Angel" uniqKey="Huerta Ocampo J" first="Jose Angel" last="Huerta-Ocampo">Jose Angel Huerta-Ocampo</name>
<name sortKey="Muhlia Almazan, Adriana" sort="Muhlia Almazan, Adriana" uniqKey="Muhlia Almazan A" first="Adriana" last="Muhlia-Almazan">Adriana Muhlia-Almazan</name>
<name sortKey="Uribe Carvajal, Salvador" sort="Uribe Carvajal, Salvador" uniqKey="Uribe Carvajal S" first="Salvador" last="Uribe-Carvajal">Salvador Uribe-Carvajal</name>
</country>
<country name="États-Unis">
<region name="Illinois">
<name sortKey="Rosas Lemus, Monica" sort="Rosas Lemus, Monica" uniqKey="Rosas Lemus M" first="Monica" last="Rosas-Lemus">Monica Rosas-Lemus</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MitoPlantRedoxV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000241 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000241 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MitoPlantRedoxV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29594796
   |texte=   Alternative mitochondrial respiratory chains from two crustaceans: Artemia franciscana nauplii and the white shrimp, Litopenaeus vannamei.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29594796" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MitoPlantRedoxV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:18:52 2020. Site generation: Sat Nov 21 12:19:22 2020